The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass.

نویسندگان

  • Saima Begum
  • William E Johnson
  • Tony Worthington
  • Richard A Martin
چکیده

In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass(®). Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and 'needle-like' sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass(®) on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass(®) concentration, direct and indirect contact between Bioglass(®) and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that, under elevated pH conditions, Bioglass(®) particles have no antibacterial effect on S. aureus while a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study, therefore, suggest that the mechanism of antibacterial activity of Bioglass(®) is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a "space-holder" sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthes...

متن کامل

Mechanical properties of electrophoretically deposited 45S5 bioglass-graphene oxide composite coatings

Bioglass-graphene oxide composites can be served as a high-potential candidate for biomedical applications due to its specific mechanical properties. In this study, the 45S5 bioactive glass (BG) - graphene oxide (GO) composite containing 2 wt. % GO was coated on titanium alloy via electrophoretic deposition process (EPD). The synthesized GO was incorporated into BG coating to improve the mechan...

متن کامل

Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair

Calcium sulfate (CaSO₄), as a promising tissue repair material, has been applied widely due to its outstanding bioabsorbability and osteoconduction. However, fast disintegration, insufficient mechanical strength and poor bioactivity have limited its further application. In the study, CaSO₄ scaffolds fabricated by using selective laser sintering were improved by adding 45S5 bioglass. The 45S5 bi...

متن کامل

Studies on preparation and characterizations of CaO-Na2O-SiO2-P2O5 bioglass ceramics substituted with Li2O, K2O, ZnO, MgO, and B2O3

-The bioactive glass 45S5 (Hench glass), having composition 45 SiO2 24.5 Na2O 24.5 CaO -6 P2O5 (wt %) were prepared with substituted Li2O, K2O, ZnO, MgO, and B2O3 by conventional melting process in an electric globar furnace at 1400±10 OC. The Controlled crystallization were carried out to convert the bioglasses to their corresponding bioglass ceramics. Nucleation and crystallization regimes we...

متن کامل

Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10) composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2016